Skip to main content

Computational Spectroscopy

Category

Theory/Modeling

Laboratory

Lawrence Berkeley National Laboratory (LBNL)

Capability Experts

David Prendergast ([email protected])

Description

We provide support for modeling of the atomic and electronic structure of hydrogen storage materials—chemical hydrides and composites, sorbents (e.g., MOFs), gas-selective membranes, liquid organic hydrogen carriers (LOHCs)—and their functional interfaces at the nanoscale using first-principles density functional theory calculations. These studies can provide direct prediction and/or interpretation of X-ray spectroscopy data measured at synchrotrons (e.g., XANES) or in the lab (e.g., XPS). We place particular emphasis on modeling operando measurements, which are also a key capability within HyMARC at the Advanced Light Source (LBNL).

The Computational Spectroscopy capability provides:

  • Training and support for first-principles computational modeling of materials and molecules for hydrogen storage and delivery;
  • Guidance on bulk and interface measurements that can reveal mechanistic details of (de)hydrogenation processes;
  • Simulation of nanoscale models of materials, molecules and their interfaces.
  • Simulation of X-ray absorption (XAS, XANES, NEXAFS), emission (XES), and resonant inelastic X-ray scattering (RIXS);
  • Simulation of X-ray photoemission (XPS) and its operando variations, typically ambient-pressure (AP-XPS).

Status

Online and available for use in collaboration with HyMARC.

Figures

Atomic and electronic structure models of functional hydrogen storage materials

Figure 1. Atomic and electronic structure models of functional hydrogen storage materials: (from L to R) nanoencapsulated magnesium; metal organic framework; supported metal nanocatalysts.

References

  • L. Chen, P Verma, K. Hou, Z. Qi, S. Zhang, Y. Liu, J. Guo, V. Stavila, M. Allendorf, L. Zheng, M. Salmeron, D. Prendergast, G. Somorjai, and J. Su, "Reversible Dehydrogenation and Rehydrogenation of Cyclohexane and Methyl-cyclohexane by Single Metal Platinum Catalyst," Nat Commun. 13, 1092 (2022).
  • J. L. Snider, J. Su, P. Verma, F. El Gabaly, J. D. Sugar, L. Chen, J. M. Chames, A. Talin, C. Dun, J. J. Urban, V. Stavila, D. Prendergast, G. A. Somorjai and M. D. Allendorf, "Stabilized open metal sites in bimetallic metal–organic framework catalysts for hydrogen production from alcohols," J. Mater. Chem. A 9, 10869 (2021).
  • G. M. Su, H. Wang, B. Barnett, J. R. Long, D. Prendergast, W. S. Drisdell, "Backbonding contributions to small molecule chemisorption in a metal–organic framework with open copper (I) centers," Chemical Science 12, 2156 (2021).
  • Z. Zhang, J. Su, A. S. Matias, M. Gordon, Y. Liu, J. Guo, C. Song, C. Dun, D.  Prendergast, G. A. Somorjai, J. J. Urban, "Enhanced and stabilized hydrogen production from methanol by ultrasmall Ni nanoclusters immobilized on defect-rich h-BN nanosheets," Proc. Nat. Acad. Sci. 117, 29442 (2020).
  • L. F. Wan, E. S. Cho, T. Marangoni, P. Shea, S. Kang, C. Rogers, E. Zaia, R. R. Cloke, B. C. Wood, F. R. Fischer, J. J. Urban, and D. Prendergast, "Edge-functionalized graphene nanoribbon encapsulation to enhance stability and control kinetics of hydrogen storage materials," Chem. Mater. 31, 2960 (2019).
  • J. L. White, A. J. E. Rowberg, L. Wan, S. Kang, T. Ogitsu, R. D. Kolasinski, J. A. Whaley, A. Baker, J. R. I. Lee, Y. Liu, L. Trotochaud, J. Guo, V. Stavila, D. Prendergast, H. Bluhm, M. D. Allendorf, B. C. Wood, and F. El Gabaly, "Identifying the Role of Dynamic Surface Hydroxides in the Dehydrogenation of Ti-doped NaAlH4," ACS Appl. Mater. Interfaces 11, 4930 (2019).